A Real Time Control Strategy for Optimisation of an Economised Indirect Multi-Temperature Transport Refrigeration System

نویسندگان

  • Shane Smyth
  • Donal P. Finn
  • Barry Brophy
  • S. Smyth
چکیده

This paper describes an approach for control of an economiser cycle based on the use of economiser pressure as the primary control parameter. In the study, the economiser cycle was used to optimise a multi-temperature indirect (IDX) transport refrigeration system, where hydronic secondary loops were utilised. In transport refrigeration applications, IDX systems can offer the potential to address a number of important environmental and control issues associated with direct expansion (DX) systems. IDX systems may also give rise to reduced capacity and COP through increased compressor pressure ratios associated with the hydronic secondary circuit and power requirements of the liquid secondary pumps. One approach by which this issue can be addressed is through use of an economiser cycle, which provides a mechanism for performance enhancement by augmenting the refrigeration effect of the primary refrigerant, in the primary to secondary heat exchanger of these systems. Previous work ascertained that by control of the mass-flow injection ratio, an economiser cycle can be used to optimise indirect multi-temperature systems for a wide range of diverse operating conditions. This method of control necessitates mass-flow instrumentation which is impracticable for field applications. An alternative method of control described here, is based on a more easily measured economiser pressure, thereby eliminating the requirement of mass-flow instrumentation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Performance Evaluation of an Economised Indirect Multi-Temperature Transport Refrigeration System

Direct expansion (DX) refrigeration technology is almost exclusively used in multi-temperature transport refrigeration systems. Multi-temperature systems use up to three evaporators, requiring large refrigerant charges and system pressure control to operate over a wide range of set-point conditions. Despite incremental design improvements over the past decade, environmental and control issues c...

متن کامل

Multi-objective Optimization of a Solar Driven Combined Power and Refrigeration System Using Two Evolutionary Algorithms Based on Exergoeconomic Concept

This paper deals with a multi-objective optimization of a novel micro solar driven combined power and ejector refrigeration system (CPER). The system combines an organic Rankine cycle (ORC) with an ejector refrigeration cycle to generate electricity and cold capacity simultaneously. Major thermodynamic parameters, namely turbine inlet temperature, turbine inlet pressure, turbine back pressure, ...

متن کامل

Advanced Analysis of Dew Point Control Unit of Hybrid Refrigeration Systems in Gas Refineries

In this paper, an advanced analysis of a novel hybrid compression-absorption refrigeration system (HCARS) for natural gas dew point control unit in a gas refinery is presented. This unit separates the heavy hydrocarbon molecules in the natural gas, which is traditionally carried out by natural gas cooling in a compression refrigeration cycle (CRS). The power input required for the refrigeration...

متن کامل

Mathematical Method and Thermodynamic Approaches to Design Multi-Component Refrigeration Used in Cryogenic Process Part I: Optimal Operating Conditions

Abstract: Minimizing the work consumed in refrigeration system is the most effective measure to reduce the cost of products in sub-ambient chemical processes. The introduction of mixed working fluids into refrigeration system in place of pure working fluids is a recent advancement applied in the field. Due to the lack of systematic design method for Mixed Refrigerant Cycle (MRC), conventional a...

متن کامل

The Mathematical Method and Thermodynamic Approaches to Design Multi-Component Refrigeration used in Cryogenic Process Part II: Optimal Arrangement

  A refrigeration cycle is a chain of various pieces of equipment including compressors, condensers, evaporators, and expansion devices each of which takes on a particular thermodynamic process duty in the cycle that eventually results in the production of the required refrigeration. The results of optimized mixed refrigerant cycles (MRCs) in Part I show that the configuration of MRC is an eff...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014